
E7.5- 10.15.

Effect of Moisture and Moisture Related
Phenomena from Skylab

"Made available under NASA sponsorship
In the interest of ear!y and wid e Ffis-
semrnination of EarSh Resources Survey
Program information and without iiabilitW
for any use made thereol."

Joe R. Eagleman
Principal Investigator

(E75-10150) EFFECT OF ANTENNA PATTERN ON N75-18662
S-194 RADIOMETRIC MEASUREMENTS Monthly
Progress Report, Dec. 1974 (Kansas Univ.
Center for Research, Inc.) 19 p HC $3.25 Unclas

CSCL 20N G3/43 00150

Technical Report 239-21
Monthly Progress Report, December, 1974

Atmospheric Science Laboratory
Center For Research, Inc.
University of Kansas



Effect of Antenna Pattern on S-194
Radiometric Measurements

J. R. Eagleman
R ..K. Moore
S. K. Parashar

Atmospheric Science Laboratory
Space Technology Center

Center for Research, Inc.
University of Kansas
Lawrence, Kansas 66045

Clayton D. Forbes, Technical Monitor
Principal Investigations
Management Office

Lyndon B. Johnson Space Center
Houston, Texas 77058

EREP NO. 540-A2 March 19, 1973 to May 31, 1975

Contract Number NAS 9-13273



Effect of Antenna Pattern on S-194
Radiometric Measurement

Introduction

An attempt was made to find the effect of antenna

pattern on radiometric measurements made by S-194 radio-

meter operating in L-band. The half-power beam width

of S-194 sensor is 150. The 150 solid cone centered

about the vertical- axis corresponds to the angular width of

the beam between the half-power points of the pattern. The 150

angle will encompass a swath width 'of 60 nmi -at the orbital

altitude of 235 nmi. The first null of the major lobe

of the antenna pattern is at 360 which encompasses a

swath width of 145 nmi. About 97% of the energy is con-

tained within the- major lobe. The radiometric measure-

ments by the sensor will be influenced to a greater ex-

tent by the brightness temperature of the material con-

tained within the half-power beam width.

The radiant energy received by the antenna was

sampled at such a rate as to ensure a minimum of 97%

ground coverage overlap. The distance on the ground be-

tween centers of two consecutive resolution cells is about

2 nmi. Because of such a small distance, the difference

in the radiometric antenna temperature measurement be-

tween two consectuive resolution cells is primarily due

to random fluctuations due to noise rather than to any

changes in the ground emission. Thus, for a meaningful

analysis, it is important to establish the effect of



antenna pattern to show at what distance the ground ef-

fects begin to predominate over those of noise. Before

correlating the "ground truth" information with the anten-

na temperature, it is also important to establish the

independence of radiometric measurements between the

resolution cells at different center displacements.

The purpose of the analysis presented here is two-

fold. The first is to determine how the ground signal

is modified by the antenna pattern and to establish the

effect of noise. The second is to explore the possibility

of reducing the effective resolution cell size by apply-

ing some kind of correction to the radiometric measure-

ment. The possiblity of an improved estimate of the

ground signal from the corrected radiometric measure-

ments is explored.

The analysis is one-dimensional in the sense that

only variations in the direction along the ground track

are considered. In effect this means assuming a rect-

angular rather than circular antenna pattern; but, this

assumption which greatly simplifies analysis, is not

likely to give results significantly different from those

with an assumed circular pattern.

Theory

Let g(x) be the ground signal as a function of dis-

tance n, a(x) the antenna pattern as a function of dis-

tance, n(x) noise as a function of distance; then data,



d(x) as a function of distance is given by:

d(x) = a(x). g(x) + n(x) (1)

Taking a Fourier transform of equation 1:

D(w) = A(w) G(w) + N(w) (2)

If we wish to find an estimate d(w) of G(w) by dividing

in the frequency domain, we have:

G(w) = D(w) = G(w) + N(w) (3)

The simplified and approximate normalized antenna pattern

for S-194 as given in the gSensor Performance Manual' is:

a(O) = exp(-158sin20)

But for small angle 0,

sin 0 " sin,0 - tan Q = .x
2 2 2 2

where:

x = distance on the ground
h = altitude = 231 nmi

Thus:

a.(x) = exp -x 2

or:

a(x) = exp -x 2

(, 2) (4)

where xa2 = 1350, xa = 36.7

Taking the Fourier transform of equation 4, we have:

-w2x a (5)
A(w) = xa

Assume for simplicity of analysis that the ground signal

g(x) is also given by a Guassian form:
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g(x) = go e- (6)

Thus, by taking the Fourier transform of Equation 6, we

have: -w 2X

-4
G(w) = go xo e (7)

We further describe the noise by a Gaussian form

that decays between sampling points:

_ 2

xn (8)
n(x) =no e

This implies that every time a sample is taken, a

new noise of this size is introduced as given by Equation

8. The Fourier transform of Equation 8 is given by:

_W2 Xn
2

4
N(w) = non - e (9)

By combining Equations 3,5,6 and 9, we have:
2 2 2 2

_w Xo w (xa .Xn)
4 '4

(w) goxo e + n Xn e (10)
Xa

To obtain (x), the signal to be estimated, we have

to take the inverse Fourier transform of Equation 10.

The limits normally used on the inverse Fourier transform

integral are -- to +c. In the present case, the noise

term, the one which has been multiplied by the inverse

of the antenna pattern, is an ever increasing term with

frequency and the inverse transform convergent. This

implies that there will be more contribution to the noise

from the high frequency components than from the small

frequency components. These high frequency components

are extremely small in the actual antenna pattern and



they become important here because the smaller the num-

ber, the larger the value of its inverse.

It is clear that the factor multiplying the noise

term will have to be truncated in the frequency domain.

The problem is to establish at what point the truncation

is necessary. If the noise term is truncated, it is clear

that the signal term will have to be truncated accordingly.

The inverse Fourier transform of Equation 10 can be

written as follows by assigning a finite limit on the

integrals instead of :
-w x 0

2

^(x) = go0xo e cos xwdw + noxn f
0 xa o

W2 (x a2 _xn 2 )
4

e cos xwdw (11)

Truncating the noise term is equivalent to multiply-

ing it by a rectangular frequency window function which

is unity within the limits and zero outside. Such a

window function is used for convenience here. Perhaps

a window function with gradual cutoff would be somewhat

superior to the rectangular one, but none were tried.

From Equation 2, we have:

-w (xa2+Xo2) _W2n 2
4 4

D(w) = goxaxoW e +T- noxn e (12)

Or, taking the inverse Fourier transform of Equation 12:

2  _2

X -+X 2 xn2

d(X) = goxaXo e  0 a + no e (13)

-\rx a 2-Xa



As given in the Sensor Performance Report', the

antenna temperature measured by the S-194 radiometer has

uncertainty described by the standard deviation of the

temperature measurement. For an average of 200', the

standard deviation is about 10. Thus, we can assume a

signal-to-noise ratio of 200 to l.in the present analysis.

By assuming a signal-to-noise ratio of 200, from

Equation 13, at x=0, we have:

goXoXaF= 200n o

VXa2 +Xo 2

Therefore:

no = goXaXoW . 1 (14)
200

axa 0+xo

Also, Equation 11 can be rewritten as:

0 -(w 2/Wl) 2 cos xwdw +
g(x) = g 0 x o f e

n (w/w2) 2
noxn I e cos xwdw

xa o

where:

wI  2/xo, and w2 = 2/VXa 2-xn

we have:

SfWl = 0 w 2wl) W1  (2 )2  , Thus:

( ) ( ) w2
w 1 = 2 W 1

Let 0 = c , Therefore:

W2

21 =(-L) wl = ( w2 = cw2 = .2wI 7 )



Thus:

Q = 01 = 02 = cw2  (15)

where c can be chosen arbirtarily. We have from Equa-

tion 4 that xa = 36.7. Let xn = 1.0 nmi.

We are assuming that samples are taken every two nmi.

The Gaussian form of the noise is centered around the

sampling point and it decays in.between the sampling

points. The value of 1.0 for xn is then justified where

the distance between the center of the successive reso-

lution cells is two nmi.

To demonstrate the method, we further assume the

following different values of xo: xo = 5,10,20 nmi.

These different values are chosen because they will show

how different signals are modified by the antenna pattern

and to establish the trend of inverse antenna pattern

modification. This will also demonstrate how well dif-

ferent types of signals can be reproduced.

By substituting the values of xn, xo and xa in

Equation 14, we have:

xo = 5, no = 0.042g o  (16)
xo = 10, no =0.082go
xo = 20, no =0.149go

Also, by choosing c arbitrarily, and evaluating the noise

and signal integral numerically, we have ,at x=0, from

Equation 11:



xO = 5

Signal Noise Noise Term/
C Integral Integral Signal Term

2.50 0.13102 6.22 60.5x10 -4

2.75 0.14301 20.44 186x10-4

3.00 0.15469 77.31 600x10 -4

3.25 0.16604 335.30 2600x10 -4

x o = 10

Signal Noise Noise Terml
C Integral Integral Signal Term

2.50 0.11775 6.22 67.2x10 -4

2.75 0.12594 20.44 206x10 -4

3.00 0.13333 77.31 732x10 -4

3.25 0.13995 335.30 2940x10- 4

x = 20

Signal Noise Noise Term/
C. Integral Integral Signal Term

2.50 0.08393 6.22 85x10-4

2.75 0.08572 20.44 274x10-4

3.00 0.08692 77.31 1020x10-4

3.25 0.08770 335.30 4390x10-4

We only have to evaluate the noise integral

at n=0 because we are assuming that a new, independent

noise sample is centered on each data sampling point.

The ratio between the noise term and the signal term was

obtained from Equations 11, 15 and 16, and the values of

the ingegrals given above. The limit, Q, on the integrals

corresponding to any value of c is given by:

Q = cw 2 = 2c/(xa.2 -Xn 2 )1 2

For signal = 250, at x=O, we have from the above tables:



C Q Signal Noise
x =5 =I10 xn=20

2.50 2.50/18.3 250.0 1.50 1.68 2.13

2.75 2.75/18.3 250.0 4.65 5.11 6.82

3.00 3.'00/18.3 250.0 15.00 18.30 26.00

3.25 3.25/18.3 250.0 65.00 73.50 109.00

Thus, depending on where the data is chopped off

in the frequency domain, the noise introduced is as

given above and is statistically the same at every

point. The signal in Equation 11 was evaluated for

different n corresponding to different values of xo

(5, 10 and 20 nmi) and the results are given in

c.Figures 1,2 and 3, respectively.

Each figure corresponding to different xo shows

the original signal given by Equation 6, the modified

signal given by Equation 11 for different limits and

the signal without inverse antenna pattern given by

Euqation 13.

Discussion of Results and Conclusions

In the attached figures corresponding to different

xo, the original signal which had to be reproduced is

given by curve 1. If no inverse antenna pattern was

used, this signal would look like curve 2. In this

case, the original signal had been modified by the

antenna pattern.
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If we decide to correct or modify the signal by

utilizing the inverse antenna pattern, we get curves

3 to 5 for different limits. As the limit in the fre-

quency domain increases, the mean of the modified

signal approaches the original signal, but the uncertain-

ty or the noise contribution increases significantly.

This means that we could reproduce the original signal

exactly in the ensemble mean by choosing the limit

to be - in the absence of noise, but the uncertainty

of an individual experiment due to noise will be so

high that it will be impractical to do so. For example,

when the limit on the noise integral corresponds to

c=3.0, the modified signal as given by curve 5 is al-

most the same as the original signal for xo=20, but

it is different for xo=5. The uncertainty in the esti-

mation increases from 65.0 for xo=5 to 109.0 for xo=20.

This implies that the uncertainty in the estimated sig-

nal also depends on the original signal.

The question to be decided is that in what range

of values the uncertainty in the corrected or modified

signal is practical to have and can be tolerated. If

we can tolerate an uncertainty of about 
+ 50, then the

limit chosen should correspond to c = 2.75. With

this much uncertainty, the modified or corrected signal

as given by curve 4 is not close to the original for

x0=5; but, as the xo increases the estimated signal



gets closer and closer to the original signal until 
it

is almost the same. Even for the worst case of esti-

mation for xo=5, the modified signal is considerably

better than the unmodified or uncorrected signal given

by curve 2.

If the limit corresponding to c=2.50 is chosen,

then the uncertainty in the signal will be about 2.00,

but the estimated. signal for x0=5 will be worse than

that for c=2.75.

The reduction in the size of the resolution cell

because of modification of the signal utilizing the

inverse pattern is evident from the following:
X0xo

5 10 20

Half-power width of unmodified
signal. 31.25 32.00 37.00

Half-power width of modified sig-
nal, c=2.75. 13.00 13.75 18.00

Improvement in the resolution
cell size by a factor of: 2.4 2.33 2.05

Thus, the size of the resolution cell is reduced from

about 70 nmi in the unmodified signal case to about

35 nmi in the case of the modified signal. A figure

showing the variation of noise with the effective resol-

ution cell size for different values of xo is attached(Fig. 4).

The sharpness in the transition of noise is to be

noted. A very small decrease in the effective resolu-

tion cell size produces a great increase in noise.
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How to Obtain the Modified Signal

Let d(x) be the signal as a function of distance

which represents the antenna temperature measured by

the S-194 sensor. Let a(x) be the antenna pattern

given by the following:

-X 2 /Xa 2

a(x) = e (17)

where Xa2 = 1350. The Fourier transform of Equation 17

is given by:

-w 2 Xa
4

A(w) = x r- e

+w Xa
4

1 = A-'(w) =  1 e
(18)

A(w) xa

Take Fourier transform of d(x) and let it be denoted

by D(w), then G(w) is given by:

w2 x 2w xa2

4
G(w) = D(w) e

(19)

2(x) can be obtained by the following equation:

2l 2w xa

W1
g(n) =  2 f D(w) e cos x-wdw

where w1 
= c/18.3 or, for c= 2.75:

2 
2

w1

A(x) = 1 f D(w) e cos xwdw (20)
7(3/2) O

Xa



The modified signal as given by Equation 20 can then

be used instead of the original data.


